

30 pu Limestone Courtesy of F. Jerry Lucia

Rudhist: Middle East Well Evaluation Review# 15, 1994

High Permeability Grainstone: Petrophysical and Geomechanical Issues in Carbonate Oilfields. Austin Boyd, Schlumberger

R. E. (Gene) Ballay, PhD

Carbonate Petrophysics	Total	2981
Manual Content	Introduction	48
	Carbonate vs Sandstone	25
	¬ Thin Sections	20
COURSE OVERVIEW	Lucia Petrophysical Classification	112
This five-day course is for	Capillary Pressure	67 37
Engineers, Geologists and Team	Spontaneous Potential Log	16
Leaders who require <i>an</i>	Gamma Ray Log	78
Leaders who require an	Sonic Log	69
understanding of the	Bulk Density Log	121
complexities of open-hole	Neutron Log	90
carbonate log analysis.	Specialty Sonic	73 12
Participants will learn to	Porosity – Mineralogy from Core Data	22
characterize rock quality	Laboratory Mineralogy (XRD, XRF, etc)	41
visually (thin sections CT-scan	Laboratory Evaluation of Cuttings	79
visually (thin sections, C1-scan,	Permeability from Core Data	10
etc) and numerically (routine	Resistivity from Logs	48
core analyses, capillary pressure,	Archie 'm' Exponent	62
etc) and to then <i>relate</i> those	Quick Look Techniques	24
results to both routine and	Pickett Plot	86
specialty open-hole log	Pulsed Neutron Log	96
regrouped The complementary	Log-inject-log with Pulsed Neutron Logging	35
responses. The complementary	Nuclear Magnetic Resonance-Basic	113
nature of the various tools and	Nuclear Magnetic Resonance-Carbonate	115
<i>techniques</i> are discussed and	Dielectric Loois	96 73
illustrated with actual carbonate	Borehole Gravity Meter	38
data	Pressure Profiles	45
	Field Determination of Archie Exponents	40
© 2006 Robert E Ballay, LLC	Primary vs Vuggy / Fractured Porosity - Continued Following Page -	86

Carbonata Datrophysics	- Continued From Preceding Page -				
Carbonate Petrophysics	Comparison of Vuggy Porosity Evaluation Techniques				
Manual Content	Rock Quality and Cutoffs	122			
	Quick Look Case Histories				
ABOUT THE COURSE	Arabia	34			
Carbonate petrophysics begins	Field Studies	14			
with a <i>contrast of carbonates</i>	Madden Deep Field, Madison Formation, Wind River Basin	55			
and sandstones. followed by	Cabin Creek Field, Red River Formation, Williston Basin	47 ⊿q			
reservoir classification	Weyburn Field, Mission Canyon Formation, Williston Basin				
according to the Lucia	Middle East Carbonate Cementation Exponents	126			
Petrophysical Classification	Summary	63 25			
methodology. Thin sections and	Appendix				
CT-Scans are used for	Formation Evaluation: Carbonate vs Sandstone	19 14			
visualization while capillary	Capillary Pressure in the Ghawar Arab D Carbonate	6			
pressure serves to quantify the	Azimuthal Density Images (Carbonate Application)	15			
differing properties.	iviuiti-dimensional Petrophysics (Carbonate Application)	11			

Individual *logging tools* (both *routine and specialty*) are introduced; *carbonate responses* are *illustrated with actual data*. Archie's exponents are discussed within the context of both his original data sets, and carbonate specific measurements. The *complementary attributes of each tool and technique* are used to identify and evaluate complex carbonate reservoirs, as illustrated with actual applications.

Carbonate Petrophysics *Manual Organization*

YOU WILL LEARN HOW TO

•*Recognize the key distinctions* between carbonates and sandstones, and understand the implications of those differences upon modern logging tool responses and formation evaluation methods

•Perform both *quick-look and detailed interpretations*, taking into account carbonate complexities

•Design a *cross-discipline formation evaluation program* that will characterize the interpretational parameters associated with a specific reservoir, and facilitate complete analyses

© 2006 Robert E Ballay, LLC

Part 1 Introduction Carbonate vs Sandstone Thin Sections Part 2 Lucia Petrophysical Classification **Capillary Pressure** Part 3 **CT-Scan** Spontaneous Potential Log Gamma Ray Log Part 4 Sonic Log Part 5 **Bulk Density Log** Part 6 Neutron Log Part 7 **Specialty Sonic** Porosity Log QC & Normalization Porosity – Mineralogy from Core Data Laboratory Mineralogy (XRD, XRF, etc) Laboratory Evaluation of Cuttings Permeability from Core Data Part 8 Resistivity from Logs Archie 'm' Exponent Archie 'n' Exponent **Quick Look Techniques** - Continued **Pickett Plot** Following Page -Part 9 **Pulsed Neutron Log** Log-inject-log with Pulsed Neutron Logging

Carbonate Petrophysics Manual Organization

The Devil's Promenade, SW Missouri

© 2006 Robert E Ballay, LLC

Part 10

Nuclear Magnetic Resonance-Basic Nuclear Magnetic Resonance-Carbonate Part 11 **Dielectric Tools** - Continued From Part 12 Preceding Page -Image Logs **Borehole Gravity Meter Pressure Profiles** Part 13 Field Determination of Archie Exponents Primary vs Vuggy / Fractured Porosity Part 14 Comparison of Vuggy Porosity Evaluation Techniques **Rock Quality and Cutoffs** Quick Look Case History - Arabia Quick Look Case History - Iran Part 15 Field Studies - Madden Deep Field, Wind River Basin Field Studies - Cabin Creek Field, Williston Basin Field Studies - Jay Field, Gulf Coast Basin

Field Studies - Weyburn Field, Williston Basin Field Studies - Middle East Cementation Exponents

Part 16

Linear Correlation

Summary

Appendix

Formation Evaluation: Carbonate vs Sandstone Up vs Down: Pipe-conveyed (Carb) Wireline Data QC Capillary Pressure in the Ghawar Arab D Carbonate Azimuthal Density Images (Carbonate Application) Multi-dimensional Petrophysics (Carb Application)

Typical Five Day Presentation - Customized Agenda Upon Request

Day 1				Day 2			
Start	Stop	Duration	Торіс	Start	Stop	Duration	Торіс
830	915	45	Course Introduction	830	945	75	Sonic in Carbonate
915	930	15	Carbonate vs Sandstone	945	1000	15	Break
930	945	15	Break	1000	1100	60	Rhob / Pef, WL & LWD in Carbonate
945	1000	15	Thin Sections	1100	1115	15	Break
1000	1045	45	Lucia Petrophysical Classification	1115	1200	45	Rhob / Pef, WL & LWD in Carbonate
1045	1100	15	Break	1200	1300	60	Lunch
1100	1200	60	Lucia Classification	1300	1415	75	Neutron, WL & LWD in Carbonate
1200	1300	60	Lunch	1415	1430	15	Break
1300	1400	60	Capillary Pressure	1430	1545	75	Specialty Sonic in Carbonate
1400	1415	15	Break	1545	1600	15	Break
1415	1500	45	Rock Quality and Cutoffs	1600	1615	15	Porosity Log QC / Carb Exmples
1500	1515	15	Break	1615	1630	15	Review and Feedback
1515	1545	30	CT Scan with Carb Examples				
1545	1615	30	GR in Carbonate				

1615

1630

15

Review and Feedback

Typical Five Day Presentation - Customized Agenda Upon Request

Day 3				Day 4			
Start	Stop	Duration	Торіс	Start	Stop	Duration	Торіс
830	900	30	Phi / Mineralogy from Core	830	945	75	Pickett Plot
900	930	30	XRD/XRF/etc Mineralogy	945	1000	15	Break
930	945	15	Break	1000	1100	60	Pulsed Neutron Log
945	1030	45	Resistivity Tools & Constraints	1100	1115	15	Break
1030	1045	15	Archie's 'm' Exponent	1115	1200	45	Pulsed Neutron Log
1045	1100	15	Break	1200	1300	60	Lunch
1100	1200	60	Archie's 'm' Exponent	1300	1345	45	PNL Log-inject-log
1200	1300	60	Lunch	1345	1400	15	Break
1300	1400	60	Cabin Creek Field-Williston Basin	1400	1500	60	BH Gravity Meter
1400	1415	15	Break	1500	1515	15	Break
1415	1530	75	Archie's 'n' Exponent	1515	1600	45	Pressure Profiles
1530	1545	15	Break	1600	1615	15	Linear Correlation
1545	1600	15	QL Techniques	1615	1630	15	Review and Feedback
1600	1615	15	Arabian QL Evaluation				
1615	1630	15	Review and Feedback				

Typical Five Day Presentation -Customized Agenda Upon Request

Day 5

Start	Stop	Duration	Торіс
830	945	75	Image Log
945	1000	15	Break
1000	1115	75	Dielectric Log
1115	1130	15	Break
1130	1200	30	Basic NMR
1200	1300	60	Lunch
1300	1415	75	Basic NMR
1415	1430	15	Break
1430	1545	75	Carbonate NMR
1545	1600	15	Break
1600	1615	15	Course Summary
1615	1630	15	Review and Feedback

© 2006 Robert E Ballay, LLC

The Gasconade, Gunter, and Eminence are exposed at the Natural Bridge. The Gasconade dolomite is the uppermost layer, the Gunter sandstone is in the middle, and the Eminence dolomite is the lowest layer. Ha Ha Tonka, SW Missouri

• Sandstone - Diagenesis typically limited to compaction and cementation

• Carbonate - Diagenesis includes cementation, compaction, dolomitization, and dissolution

The Natural Bridge (from distance, see the light in the background) and then up close, looking 'under the bridge' into the sink hole beyond

- Recognition (alphabetical) of material used in the Course
 - My apologies if I've omitted anyone Please bring it to my attention
 - Additional material being reviewed and will be credited as it is incorporated
- Aguilera, Roberto Servipetrol
- Allen, David Schlumberger
- Baker WWW
- Balliet, Ron Halliburton
- Black, Andy Edcon Gravity and Magnetics
- Blum, Michael Baker Atlas
- Bona, Nicola AGIP
- Chen, Songhua, Baker Atlas
- Chitale, Vivek Halliburton
- Clerke, Ed Saudi Aramco
- Cox, Roy Consultant
- Crain, Ross Consultant

- Dennis, Bob Schlumberger
- DeSouza, Hugh SGS Lakefield Research
- Diederix, Michael Shell
- Doveton, John Kansas Geological Survey
- Edwards, Carl, Baker Atlas
- Eberli, Gregor University of Miami
- Ehrenberg, Steve Statoil
- Flaum, Charles Schlumberger
- Funk, Jim Aramco
- Gelinsky, Stephan Shell
- Guy, Bill Kansas Geological Survey
- Halliburton WWW
- Harlo, Carlos Occidental
- Hartmann, Dan Consultant
- Heil, Dick Retired Aramco
- Hess, Lillian Long Island University

- Kessler, Calvin Halliburton
- Jones, Pete Saudi Aramco
- Lacazette, Alfred NaturalFractures.Com
- Lynn, Jack Aramco
- Lawrence, Tony Consultant
- Lucia, Jerry Bureau of Economic Geology
- McLean, Rick Consultant
- Moinard, Laurent Consulant
- Parra, Jorge Southwest Research Institute
- Polkowski, George Aramco
- Quinn, Terry Baker Atlas
- Ramakrishnan, T. S. Schlumberger
- Rasmus, John Schlumberger
- Sanders, Lee Halliburton
- Schlumberger WWW
- Siddiqui, Shameem Saudi Aramco

- Smart, Chris British Petroleum
- Strauss, Jonathan Consultant
- Stromberg, Simon Reservoir Management Ltd (UK)
- Torres-Verdin, Carlos University of Texas
- Toumelin, Emmanuel University of Texas
- Westphal, Hildegard Erlangen University, Germany
- Zhang, Gigi Baker Atlas

Carbonate Petrophysics FAQs

•My <u>*First, and Top Priority*</u>, is to ensure a-priori that the Course meets the Client's expectation. I suggest that one B&W copy of the Manual (two Power Point slides per page, printed front and back for a total of ~ 3000 / 4 = 750 paper pages) be produced and posted to the Client for review. Reproduction will be about \$US75, mileage to / from the Print Shop about \$US50 and postage additional (dependent upon the actual destination).

•The focus of the Course is on carbonate matrix issues, and not fractured reservoirs. Course Content issues for Client Consideration are summarized below – *please read these and consider them carefully*.

•If the Client determines they want to proceed with the Course, this expense will be deducted from the Registration Fee. If the Client determines the Course is not what they are looking for, they owe for only the above manual production / shipping expenses (these expenses to be reimbursed within 30 days via either electronic payment in \$US or a \$US check drawn on a USA bank).

Course Content Issues for Client Consideration

Please read and consider carefully.

•Modules for the basic techniques typically begin with an introduction to the physics behind the actual measurements. This is a conscious and deliberate decision, based upon my experience as both a practicing petrophysicist and as a teacher. Many times I have discovered that even those with several years of experience, are not aware of some of the basic physical principles, and have thus compromised their use of the measurements.

•I realize, however, that there are audiences which are not interested in the Basic Physics and possibly not even in an Introduction to Basic Tools / Techniques. Please review the default set-up to ensure it satisfies your objectives.

•Continued following exhibit

Course Content Issues for Client Consideration *Continued*

•The Introduction Module contains a slide count and suggested schedule, with specified amounts of time allotted to specific topics. In some cases, there is a condensation of slides in going from the manual (slide count) to the actual course: not all slides in the manual are presented in the course: linear correlation is one example.

Not all modules (Field Studies, for example) in the hardcopy are covered in the presentation, but rather are present for future review and reference, when the basic tools and techniques have been developed in class.
There may be audiences which are 'application oriented'. Please review the default set-up to ensure it satisfies your objectives.

•Most of the modules have an Application Example included, which can be 'worked in class', or 'reviewed in class' or 'left for the attendee to review in their leisure'. I have found that some folks like to have problems to work, and others don't care for them (and in fact disapprove of spending course time in this manner), and I typically ask this very question in the Introduction Phase. It's preferable, however, to know the preference in advance. I would suggest that the included application examples be reviewed with an eye towards

•Are they the 'kind of problems' that you are looking for in the course?

•Shall they be 'reviewed' or 'worked' in class, or left for attendees to 'review at their leisure'.

•Please note that allowing time for problem solving will mean less time for technique presentation, as the time allocated in the course schedule will be adhered to in either situation.

•My *First, and Top Priority*, is to ensure a-priori that the Course meets the Client's expectation. *Please work with me, in advance of scheduling the course, to ensure that every requirement has been considered.*

R. E. (Gene) Ballay's 29 years in petrophysics include research and operations assignments in Houston (Shell Research), Texas; Anchorage (ARCO), Alaska; Dallas (Arco Research), Texas; Jakarta (Huffco), Indonesia; Bakersfield (ARCO), California; and Dhahran, Saudi Arabia. His carbonate experience ranges from individual Niagaran reefs in Michigan to the Lisburne in Alaska to Ghawar, Saudi Arabia (the largest oilfield in the world).

He holds a PhD in Theoretical Physics with double minors in Electrical Engineering & Mathematics, has taught physics in two universities, mentored Nationals in Indonesia and Saudi Arabia, published numerous technical articles and been designated co-inventor on both American and European patents.

At retirement from the Saudi Arabian Oil Company he was the senior technical petrophysicist in the Reservoir Description Division and had represented petrophysics in three multi-discipline teams bringing on-line three (one clastic, two carbonate) multi-billion barrel increments. Subsequent to retirement from Saudi Aramco he established Robert E Ballay LLC, which provides physics - petrophysics consulting services.

He served in the U.S. Army as a Microwave Repairman and in the U.S. Navy as an Electronics Technician, and he is a USPA Parachutist and a PADI Dive Master.